ANSWER KEY – CLASS 11 – CHEMISTRY – AT - 2 – SET 1 – 2023 – 24

1.	b) CH4	1		
2.	(a) n			
3.	(a) $v = \Delta E/h$			
4.	b) $Al_2O_3 < MgO < Na_2O$			
5.	(c) Cl			
6.	d) LiI			
7.	(b) sp^3d^2			
8.	(c) +5			
9.	(d) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$			
10.	(a) $(CH_3)_3C^+$	1		
11	(a) 3-methyl-2-butanone	1		
12	(d) 2,2-Dimethylpropane	1		
13.	(d) Assertion is false but Reason is true.	1		
14	a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.			
15.	(d) Assertion is false but Reason is true	1		
16.	d) Assertion is false but Reason is true	1		
17.	(a) 0.2 moles of $Cl_2 = 14.2$ g of Cl_2 (b) 0.4 moles of HCl =14.60g of HCl			
	OR			
	 (a) Mole fraction is the ratio of the number of moles of a component to the total number of moles (b) The reactant that is entirely used up in a reaction is called limiting reagent or the one which limits the formation of products 			

18	a. 16 b. 2				
19.	The dipole moment of ammonia is higher than the dipole moment of NF_3 The direction of the lone pair dipole moment and the bond pair dipole moment is same in NH_3 whereas in case of NF_3 it is opposite. Thus, in ammonia molecule, individual dipole moment vectors add whereas in NF_3 they cancel each other				
20	As E^{Θ} cell is +ve the cell reaction is feasible. (a) (i) +6 (ii) +6 (b) Cu (II)O				
21.	(a) position isomerism $\begin{array}{c} & \overset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{CH_{3}}{\overset{I}{\underset{C}{\overset{I}{\underset{C}{\overset{I}{\underset{C}{\underset{C}{\overset{I}{\underset{C}{\atop\atop\tilde{C}}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\atop;}{\underset{C}{\underset{C}{\atop;}{\underset{C}{\atop;}{\atop;}{\atop;}{\atop;}{\atop;}{\atop;}{\atop;}{\atop;}{\atop;}{\atop$				
22.	 (a) Any two difference between molarity and molality (b) 6 mol of KClO₃ = 735 g of KClO₃ 	¹ / ₂ x2=1 1+1			
23	(i) a. n = 2, l = 1 b. n= 3, l = 2 c. n= 5, l = 3 (ii) Orbital is the space where there is maximum probability to find electrons (iii) $\lambda = h/mv$ = 6.626x10-34/200x10-3 x3= 1.104x10-33 m	¹ / ₂ x3=1.5 ¹ / ₂ ¹ / ₂ ¹ / ₂			
24.	 (i) O²⁻ →F⁻ →Na⁺ →Mg²⁺ (ii) Na < Mg < Al < Si II. Element A. After removing the second electron the group 2 metal acquires stable configuration. Therefore, the third ionisation enthalpy would be high 	1 1			
		$\frac{1}{2} + \frac{1}{2}$			

25.	5. (A) Bond order is half the difference between the number of electrons in				
	the bonding orbital and the number of electrons in non-bonding				
	orbitals or the number of bonds between two atoms				
	(B) Bond order=				
	[No. of electrons in bonding orbital] – [No. of electrons in anti–bonding orbital] /2				
	(i) $10-4/2=3$				
	(ii) $10-6/2 = 2$				
	OR				
	sp3 hybridization				
	explanation				
		(1) x3			
	H H	~ /			
26.	$2H^+ + Cr_2O_7^{2-} + 3SO_2 \rightarrow 2Cr^{3+} + H_2O + 3SO_4^{2-}$				
27	(a) A Salt bridge is used to maintain electrical neutrality inside the circuit	1-1-2			
27.	of a galvanic cell	$1\lambda \angle -\angle$			
	It completes the circuit	marks			
	(b) A type of redox reaction involving simultaneous reduction and				
	oxidation of atoms of the same element.				
	(c) Cl atom	1/2			
		1/2			
28	a.C4H10				
	$CH_3CH_1CH_2)_2$ - $CH_3+CH_3CH_2$ - CH_2-CH_3				
	CH ₃ CH ₃ 2-Methylpen tane 3-Methylpenatone				
	D. 2 Medijipen une o Medijipenatore				
	CH ₃ -CH ₂ CH ₃				
	C. Propane				
29.	a. For the given value of n, <i>l</i> can have only n-1 values	1			
	b. spin quantum number	1			
	ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ				
		1			
	c. $I = \frac{d_{x^2-y^2}}{d_{x^2-y^2}}$				
	Y _	1			
		1			
	П				

	OR				
	4s n+l rule				
		1+1			
30	(a) simple distillation	1⁄2 x 2=			
	(b) Distillation under reduced pressure				
	(c) The component in the mixture should be steam volatile and	1			
	immiscible in water	2			
	OR	2			
	(i) Differential extraction	1			
	(ii) Distillation under reduced pressure	1			
		1			
31.	(a) Nitrogen has half-filled electronic configuration and hence its ionisation	1x5=5			
	energy is greater than oxygen.				
	(b) Electron gain enthalpy is defined as the amount of energy released when an				
	electron is added to an isolated gaseous atom				
	(c) Ununbium and Uub				
	(d) Ionisation energy of boron being unexpectedly less than that for beryllium				
	electron from 2n orbital of Boron				
	(e) $(n-2) f^{1-14} (n-1) d^{0-1} ns^2$				
	$(c) (n^{-2})^{-1} (n^{-1})^{-1} (n^{-1})^{$				
	OR				
	(a) 3rd period and 17th group.	1			
	(b) (i) B. Electron gain enthalpy values of noble gases are positive because they	1			
	have stable electronic configuration and thus have no tendency to take	1			
	additional electrons				
	(ii) C. Being an alkali metal, it is easier to remove the outermost electron				
	(c) Beryllium has smaller atomic size and ionic size than the other members	1			
	of the group, also it has high ionisation enthalpy. Moreover, it forms covalent				
	compounds while other members form fonic compounds.	2			
		-			

32.	 (i) Hybridisation is det to a new type of hybridisation is det to a new type of hybridisation is det to a new type of hybridis (ii) (a) One s and three The four sp3 hybridis of methane molecule is to 50 angles to each other (b)One s, three p and Sulphur hexafluoride lone pairs). The result (iii) (a) trigonal plana (b) trigonal plana (b) trigonal bipy (c) linear (d) octahedral (A) (a) The Nitrog 2pz1.one s-ord a Hydrogen at It has a molecce Although the I molecular geo nitrogen atom (b) electron constant (b) electron constant (c) and the filled sp2 electrons that BC13 molecular sectors that BC13 molecular sectors (c) and the sector constant (c) and	fined as the conception of the porbitals of Carly rbitals of Carly rbitals overlap with etrahedral. The carborn of the porbitals have a set of the porbitals of the port of th	pt of mixing two atomic orbitals ng entirely different energy, sha oon hybridise to form 4 sp3 hyb h four 1s orbitals of Hydrogen a rbon and four hydrogens are atta- ridise to form 6 sp3d2 hybrid or round the central sulphur atom (ahedron with 90° F-S-F bond a OR ectronic configuration of 1s2 2s bitals hybridize and overlap wit bridisation. igonal pyramidal be 109.5 degrees for trigonal py to 107 degrees due to the lone an excited state and will be rep- ron will take part in the process ach sp2 hybrid orbitals will cont- he unpaired electron in chlorine onal planar. The bond angle is 1	 a to give rise apes, etc. rid orbitals. atoms. The ached at 109. bitals. bonds, no agles. 2 2px1 2py1 h s orbitals of vramidal pair on the oresented as to form three ain unpaired 's 3p orbital. 20°. 	$ \begin{array}{c} 1 \\ 1 \\ \frac{1}{2} \times 4 = \\ 2 \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \end{array} $
	 (b) electron configuration of B in an excited state and will be represented as 1s2, 2s2, 2px1, 2py1. one 2s and two 2p orbitals of boron will take part in the process to form thre half-filled sp2 hybrid orbitals. Each sp2 hybrid orbitals will contain unpaired electrons that will overlap with the unpaired electron in chlorine's 3p orbital BCl3 molecular geometry is trigonal planar. The bond angle is 120°. 				
	1. Overlapping is	along the axis	Overlapping is on side wise		
	(B) 2. Overlapping	is maximum	Overlapping is minimum		
					2

